If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9t^2+72t-135=0
a = -9; b = 72; c = -135;
Δ = b2-4ac
Δ = 722-4·(-9)·(-135)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-18}{2*-9}=\frac{-90}{-18} =+5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+18}{2*-9}=\frac{-54}{-18} =+3 $
| 4y-25=7y+7 | | (4a+3)+3(3a+1)=12(2a+1) | | 65/100=60/x | | 5x+18=-2x+95 | | x+19=5x | | 0.61+0.31t=2.96t-0.98 | | (7x+7)-2(x-2)=x-3-(x-4) | | 6x+15=3x+45 | | 13-5y=8-2y | | Y2=5x | | w(50+75)=w65 | | w(50+75)=w(65) | | R(x)=50x | | -64/(x-9)=8 | | 3x+5x–7=9 | | 4x^2-28=224 | | x+0.16x=319 | | -2(x–5)=14 | | x(2x-1)(3x+4)=0 | | (4y+7)-(2+3y)=8 | | 11=g+7 | | 2+4y^=y^+14 | | 6x-5=4.6x | | 2/3x+1=-1/3x | | 3x-39=3(x+3) | | 4^x+2=20 | | 42=3(5x-1 | | 7=-1+4a | | 60+50.45x=x+57.95 | | 2x-5x+2=-3-2x | | 5k-19=17 | | 8^2x-5=48 |